urohemolytic coefficient - translation to arabic
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

urohemolytic coefficient - translation to arabic

MEASURE FOR THE EXPONENTIAL REDUCTION OF A QUANTITY ALONG A PATH DUE TO ABSORPTION AND SCATTERING
Absorption coefficient; Absorption Coefficient; Linear attenuation coefficient; Linear coefficient; Linear absorption coefficient; Narrow beam attenuation coefficient; Scattering coefficient

urohemolytic coefficient      
‎ مُعامِلُ حَلِّ الدَّمِ بالبَول‎
attenuation coefficient         
‎ مُعامِلُ التَّوهين:للأشعة‎
absorption coefficient         
‎ مُعامِلُ الامْتِصاص‎

Definition

coefficient
(coefficients)
A coefficient is a number that expresses a measurement of a particular quality of a substance or object under specified conditions. (TECHNICAL)
...production coefficients...
N-COUNT: usu with supp

Wikipedia

Attenuation coefficient

The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. The SI unit of attenuation coefficient is the reciprocal metre (m−1). Extinction coefficient is another term for this quantity, often used in meteorology and climatology. Most commonly, the quantity measures the exponential decay of intensity, that is, the value of downward e-folding distance of the original intensity as the energy of the intensity passes through a unit (e.g. one meter) thickness of material, so that an attenuation coefficient of 1 m−1 means that after passing through 1 metre, the radiation will be reduced by a factor of e, and for material with a coefficient of 2 m−1, it will be reduced twice by e, or e2. Other measures may use a different factor than e, such as the decadic attenuation coefficient below. The broad-beam attenuation coefficient counts forward-scattered radiation as transmitted rather than attenuated, and is more applicable to radiation shielding.